www.ASTROLAB.ru


ASTROLAB.ruЧерные дырыГеометрия черных и белых дыр ( Часть 9 )
ГлоссарийФото космосаИнтернет магазинКосмос видео



Геометрия черных и белых дыр ( Часть 9 )
Версия для печати

Зато ученые до сих пор не могут объяснить особенности эволюции так называемых "квазаров" - сверхудаленных от нас объектов Вселенной, движущихся с околосветовыми скоростями. Наибольшую загадку представляет чудовищное энерговыделение этих объектов - их светимость в тысячи раз превышает светимость нашей Галактики, хотя размеры их, по-видимому, значительно меньше. Для объяснения этого феномена выдвигалось множество гипотез; наиболее популярной из них является наличие в центрах квазаров сверхмассивных черных дыр. Но эта гипотеза встречает серьезные возражения, поскольку если бы выделение энергии квазарами осуществлялось за счет гравитационного коллапса, то занимало бы очень короткое время, пока растущие силы тяготения не перестали бы отпускать с поверхности черной дыры световые лучи. Поэтому сегодня не подвергается сомнению только одно: поскольку у квазаров наблюдаются многие свойства обычных галактик, они являются их разновидностью.

Между тем, все особенности эволюции квазаров можно вывести из одного лишь условия, что они являются сверхудаленными от нас объектами Вселенной, движущимися с околосветовыми скоростями. Отсюда автоматически следует, что квазары являются галактиками, испытывающими инерционный коллапс. Не черные, а белые дыры определяют эволюцию этих галактик, которые как бы вдвигаются в границу нашей Вселенной (точнее, в границу между ее действительным и мнимым пространствами), за которой материальные тела не могут двигаться обычным механическим способом. В результате огромные массы вещества этих галактик испаряются одновременно, превращаются в электромагнитные и гравитационные волны. Отсюда и чудовищное энерговыделение квазаров, отсюда и длительность этого энерговыделения.

Сразу же после создания общей теории относительности Эйнштейн сделал попытку построить на ее основе модель стационарной во времени Вселенной. Чтобы уравновесить силы тяготения, он ввел в свою теорию гравитационную силу отталкивания, пропорциональную расстоянию между телами. Коэффициент этой пропорциональности носит название "космологической постоянной". Именно эта постоянная и представляет гравитационную силу отталкивания в общей теории относительности. Действие этой силы столь же универсально, как и силы всемирного тяготения. Различие между ними состоит в том, что гравитационное отталкивание не зависит от материи и присуще самому пространству-времени.

Однако вскоре Фридман показал, что введение космологической постоянной в общую теорию относительности излишне, поскольку для описания нестационарной Вселенной достаточно исходных уравнений теории. После экспериментального подтверждения нестационарности нашей Вселенной, Эйнштейн согласился с Фридманом и даже назвал введение космологической постоянной "самой грубой ошибкой в своей жизни". Тем не менее, космологическая постоянная оказалась живучей, поскольку входит в уравнения теории на правах постоянной интегрирования и устранить ее математически невозможно. Равенство нулю этой постоянной можно установить только в эксперименте.

Возвратить космологическую постоянную в теорию Эйнштейна пытались не раз - в связи с уточнением возраста Вселенной, в связи с открытием квазаров и т.д. Но всякий раз результаты наблюдений удавалось объяснить без нее, в рамках исходной теории. Свое последнее возрождение эта постоянная обрела в теории Великого объединения взаимодействий (т.е. в квантовой механике). Согласно этой теории, физический вакуум представляет собой поле виртуальных частиц, взаимодействие между которыми приводит к своеобразным упругим натяжениям в среде вакуума. Именно эти натяжения соответствуют универсальной гравитационной силе отталкивания в теории Эйнштейна. Считается, что в наше время эта сила столь мала, что не играет существенной роли во Вселенной, но в самые первые мгновения ее эволюции роль этой силы могла быть определяющей.

А между тем, значительное гравитационное отталкивание тел возможно и в современной Вселенной. Уменьшение плотности плоского пространства-времени, окружающего тела, движущиеся с околосветовой скоростью, и расширение размеров области этого пространства - это и есть такое отталкивание. Причем не гипотетическое, а реально наблюдаемое в природе, в виде увеличения скорости движения галактик по мере приближения их к границе Вселенной и сопровождающих это увеличение эффектов. Просто в своей теории Эйнштейн не учел, что движение материальных тел может не только компенсировать их гравитационное взаимодействие (точнее, переводить их в состояние невесомости), но и обращать его направление, т.е. превращать его из гравитационного притяжения в гравитационное отталкивание.

Но вот в чем Эйнштейн оказался прав - так это в том, что гравитационное отталкивание присуще самому пространству-времени. Гравитационное отталкивание - это ни что иное, как инерционное взаимодействие материальных тел, осуществляемое посредством их инерционных полей. А специфика инерционных полей заключается в том, что их нельзя привязать к каким-то конкретным материальным телам, по крайней мере, в действительном пространстве Вселенной. Это означает, что инерционные поля материальных тел принадлежат не столько самим этим телам, сколько пространству-времени нашей Вселенной. Их, конечно, нельзя рассматривать отдельно от материи, но лишь в том смысле, что без материи пространство-время не существует.

Что же касается упругих натяжений вакуума, то здесь современная физика вплотную подошла к объяснению природы белых дыр. Ранее мы уже говорили (когда рассматривали гипотезу квантового испарения черных дыр Хокинга), что на сфере Шварцшильда виртуальные частицы вакуума могут резонировать и переходить в реальные частицы, уменьшая при этом энергию черной дыры и интенсивность ее гравитационного поля. Но поскольку реальные черные дыры являются неустойчивыми объектами, то для них этот процесс нехарактерен. Зато границу между действительным и мнимым пространствами нашей Вселенной можно рассматривать как ту же сферу Шварцшильда. На такой сфере действительно может происходить резонанс виртуальных частиц. Он не обязательно сопровождается рождением реальных частиц, но обязательно - возникновением гравитационной силы отталкивания. Это непосредственно следует из того, что данный резонанс уменьшает интенсивность гравитационного поля. Его можно рассматривать как квантовый механизм гравитационного отталкивания тел, движущихся с большой скоростью.

Правда здесь возникает вопрос. Если гравитационная сила отталкивания в современной Вселенной значительно отличается от нуля, то, следовательно, справедлива модель стационарной Вселенной Эйнштейна, а не модель Фридмана. Но если справедлива модель Эйнштейна, то как же тогда быть с экспериментальными доказательствами нестационарности нашей Вселенной? Или она все же стационарна, а результаты астрофизических экспериментов неправильно интерпретируются? Чтобы ответить на этот вопрос, нам нужно более внимательно приглядеться к указанным экспериментам.

В 1965 году Пензиас и Вильсон сделали выдающееся научное открытие. С помощью специальной низкошумящей антенны они обнаружили равновесное электромагнитное излучение с очень низкой температурой. Несколько месяцев они бились над загадкой его происхождения, пока, наконец, не решили, что их антенна улавливает так называемое "реликтовое излучение", существование которого было предсказано Гамовым в 1946 году. Уточняя модель нестационарной Вселенной Фридмана, он предложил гипотезу Большого Взрыва, согласно которой на ранней стадии своего расширения наша Вселенная была горячей и, следовательно, заполненной фотонами высоких энергий. В процессе дальнейшего расширения Вселенной энергия этих фотонов уменьшалась, и в наше время они должны иметь очень низкую температуру, а именно - ту, которую обнаружили Пензиас и Вильсон.