www.ASTROLAB.ru


ASTROLAB.ruДвигателиЯдерный ракетный двигатель (ЯРД) ( Часть 2 )
ГлоссарийФото космосаИнтернет магазинКосмос видео



Ядерный ракетный двигатель (ЯРД) ( Часть 2 )
Версия для печати

Уже летом 1959 года сотрудники НИИТП В.М. Иевлев и Ю.А. Трескин доложили о постановке эксперимента на реакторе ИГР, первый запуск которого состоялся в 1961-м. Конструкции совершенствовались, и в 1975-1989 гг. на реакторе ИВГ-1 была выполнена отработка тепловыделяющих сборок на ресурс в форсированном режиме при температурах до 3100 К и тепловых потоках 20 кВт/см3 (на порядок выше, чем в США). А на стендовом реакторе ЯРД минимальной размерности ИРГИТ проводились запуски при мощности до 60 МВт и температуре 2650 К. В отличие от американских российские ученые использовали более экономичные и эффективные испытания отдельных тепловыделяющих элементов в исследовательских реакторах.

Все это в 70-80-е годы позволило в КБ "Салют", КБ химавтоматики, ИАЭ, НИКИЭТ и НПО "Луч" (ПНИТИ) разрабатывать различные проекты космических ЯРД и ядерных энергодвигательных установок. В КБ химавтоматики при научном руководстве НИИТП (за элементы реактора отвечали ФЭИ, ИАЭ, НИКИЭТ, НИИТВЭЛ, НПО "Луч", МАИ) создавались ЯРД РД 0411 и ядерный двигатель минимальной размерности РД 0410 тягой 40 и 3,6 т соответственно. В результате были изготовлены реактор, "холодный" двигатель и стендовый прототип для проведения испытаний на газообразном водороде. В отличие от американского, с удельным импульсом не больше 8250 м/с, советский ЯРД за счет более жаростойких и совершенных по конструкции тепловыделяющих элементов и высокой температуры в активной зоне имел этот показатель равным 9100 м/с.

Стендовая база для испытаний ЯРД объединенной экспедиции НПО "Луч" размещалась в 50 км юго-западнее г. Семипалатинск-21. Она начала работать в 1962-м. В 1971-1978 гг. на полигоне испытывались натурные тепловыделяющие элементы прототипов ЯРД. При этом отработанный газ поступал в систему закрытого выброса. Стендовый комплекс для полноразмерных испытаний ядерных двигателей "Байкал-1" находится в 65 км к югу от г. Семипалатинск-21. С 1970 по 1988 год проведено около 30 "горячих" пусков реакторов. При этом мощность не превышала 230 МВт при расходе водорода до 16,5 кг/с и его температуре на выходе из реактора 3100 К. Все запуски прошли успешно и безаварийно.

В настоящее время подобные работы на полигоне прекращены, хотя оборудование поддерживается в работоспособном состоянии. Стендовая база НПО "Луч" - единственный в мире экспериментальный комплекс, где можно без значительных финансовых и временных затрат проводить испытания элементов реакторов ЯРД. Не исключено, что возобновление в США работ по ЯРД для полетов к Луне и Марсу в рамках программы "Космическая исследовательская инициатива" с планируемым участием в них специалистов России и Казахстана приведет к возобновлению деятельности семипалатинской базы и осуществлению "марсианской" экспедиции в 20-е годы следующего столетия.

Дальнейшим развитием ЯРД является концепция ядерной двигательно-энергетической установки на основе высокотемпературного газофазного реактора - ГФЯР. В России и США эти работы находятся на стадии научных исследований и осуществления базового реакторного эксперимента по комплексному исследованию рабочих процессов. Как упоминалось, разогрев рабочего тела в ЯРД с твердофазным реактором ограничен температурой тепловыделяющих элементов и стойкостью их материала. А чем выше температура, тем больше удельный импульс двигателя. И если использовать газообразное ядерное топливо, то эта проблема снимается. Появляются возможности увеличения удельного испульса до 20-30 км/с при температуре рабочего тела до 12000 К.

В основе одного из проектов такой установки - высокотемпературный ГФЯР со вспомогательными подвижными твердофазными тепловыделяющими сборками, которые обеспечивают критическую массу ядерного горючего. В центральной цилиндрической полости ГФЯР - рабочей камере - за счет магнитного поля соленоида, окружающего реактор, формируется малорасходная, "застойная", зона. Уран, находящийся в ней в газовой фазе, разогревает до температуры выше 9000 К протекающий водород за счет распределенных в газе лучепоглощающих добавок и не смешивается с ним. Истекающая из сопла плазма обладает высокой электропроводностью и обеспечивает получение электрической энергии во встроенном в сопло МГД-генераторе. Эта энергия необходима для питания соленоида, насосов, подающих рабочее тело, и бортовых систем аппарата. Некоторая часть урана постоянно уносится потоком водорода в окружающее пространство, но система подачи ядерного горючего все время компенсирует его убыль.

Энергоснабжение космического аппарата с ГФЯРД на режиме выключенной рабочей камеры осуществляют две газотурбинные энергоустановки общей мощностью 200 кВт с нагревом рабочего тела в твердофазных тепловыделяющих сборках. По расчетам, такой ГФЯРД будет иметь тягу 17,3 т при давлении в рабочей камере 100 кг/см2 и скорости истечения водорода 20 км/с. Продолжительность работы на номинальном режиме при пяти включениях - около 3,5 ч. Мощность МГД-генератора должна составлять 25 МВт.

Возможно, разработки ЯРД и ГФЯРД несколько опередили свое время. Однако они вовсе не столь преждевременны, как может показаться. Ведь подготовка пилотируемой "марсианской" экспедиции длится десятилетия, и энергетику для нее нужно готовить заблаговременно. Сейчас существует несколько российских и американских проектов пилотируемых комплексов с ЯРД для экспедиции на Марс. В них предполагается использовать уже испытанные конструкции, которые показали свою работоспособность, так что труды ученых и конструкторов не пропадут даром. Да они и не могут оказаться напрасными, потому что значительно продвинули вперед науку, технику и технологию. За счет применения некоторых "ноу-хау" в России и за рубежом удается получать средства для продолжения исследований

Фрагмент статьи С.Александрова и статья Леонида Квасникова ( доктор технических наук, профессор, МАИ) и Анатолия Костылева(доктор технических наук, НЦ им. М. В. Келдыша)