Если бы силы инерции отсутствовали, то все небесные тела под действием всемирного тяготения слились бы в единое "тело". Однако, как известно из повседневного опыта, Луна не падает на Землю, Земля не падает на Солнце и т. д., а все они движутся относительно друг друга по различным орбитам, сохраняя в любой момент времени условие динамического равновесия сил гравитационного притяжения и сил инерции. Этот всеобщий для всей Вселенной закон механики приводит к тому, что галактики вращаются не только вокруг своих центров масс, но и относительно друг друга, а следовательно, вращается и вся Метагалактика. Подобное вращение звездного неба с угловой скоростью порядка 10-5 угловой секунды в год наблюдается экспериментально. Где бы ни находился наблюдатель в пределах Метагалактики, он мог бы обнаружить такое вращение звездного неба экспериментальным путем. Таким образом, и земной житель тоже является участником вращения Метагалактики. Что же он увидит, рассматривая излучение далеких звезд и галактик? Представим пространство за пределами Метагалактики, содержащее огромное множество звезд и галактик, связанных между собой силами всемирного тяготения. Это пространство вращается как единое целое, наподобие огромного дискообразного тела, благодаря чему силы всемирного тяготения уравновешиваются силами инерции небесных тел (центробежные силы), не давая возможности этим телам слиться в одно общее тело. В какой-то произвольной части этого пространства находится наблюдатель (точка А), а на расстоянии R от него - небесное тело В, излучающее во все стороны потоки света. Вследствие вращения Метагалактики с угловой скоростью w линия АВ также вращается с той же угловой скоростью. Окружная скорость V точки В относительно точки А будет равна V=wR, а направление вектора будет перпендикулярно линии АВ. Если небесное тело излучает свет во все стороны со скоростью света С, то в направлении наблюдателя скорость потока фотонов должна складываться. Следовательно, скорость светового потока С1 будет меньше скорости излучения С, что вызовет доплеровский эффект, сопровождаемый красным смещением в спектре света, воспринимаемого наблюдателем. В рассматриваемом примере расстояние АВ не меняется, а причиной наблюдаемого красного смещения выступает вращение Метагалактики. Чем больше R, тем значительнее возрастает поперечная составляющая скорости V (при постоянной величине угловой скорости w). Можно представить себе и предельное значение R, при котором скорость V будет достигать величины скорости света С. В этом случае С1=0, и свет, излучаемый небесным телом, не будет достигать наблюдателя. По существу, из этого условия может быть найдена граница видимой части Метагалактики, далее которой наблюдатель не сможет увидеть небесные тела, поскольку свет от них не доходит до него. Учитывая значение w=10-4 угловой секунды в год и V=С, получим предельное расстояние R=Rпред до границ видимой части Метагалактики порядка 1,8Ч1028 см (около 19 миллиардов световых лет). В данной связи разрешается и так называемый фотометрический парадокс, согласно которому ночное небо в случае бесконечного числа звезд должно выглядеть как раскаленное Солнце. В действительности согласно рассмотренной модели в пределах видимой части Метагалактики наблюдается ограниченное число звезд и галактик, вследствие чего ночное небо слабо освещено. В рассмотренной модели вращающейся Вселенной существуют периферийные области, близкие к границам видимой части Метагалактики, в которых свет от небесных тел доходит до наблюдателя с весьма малой скоростью. Характеристики подобных световых потоков, идущих со всех сторон от периферийных областей Метагалактики, полностью соответствуют "реликтовым" излучениям, обнаруженным в космическом пространстве.
Таким образом, для выяснения природы излучения достаточно рассмотреть особенности распространения света в Метагалактике, основываясь на известных законах небесной механики. См.: Демин В.Н., Селезнев В.П. Мироздание постигая: Несколько диалогов между философом и естествоиспытателем о современной научной картине мира. Профессор Селезнев, несомненно, прав. Остается сделать общий вывод. При решении актуальных проблем современной науки только целостное философско-космистское осмысление обеспечивает глубоко интегрированное проникновение в саму сущность объективных закономерностей, выражающихся в первую очередь в неразрывном единстве макро- и микрокосмических аспектов природной и социальной действительности. В общем и целом это совпадает с основными направлениями развития современного естествознания, связанными с естественно-математическим обоснованием таких концептуальных феноменов, как единая теория поля, "великое объединение" фундаментальных взаимодействий, различные модели физического вакуума и др. При этом философские принципы космизма вооружают исследователей апробированной методологией, помогающей в определении правильности выбора теоретических приоритетов. |