www.ASTROLAB.ru


ASTROLAB.ruВселеннаяАнизотропия реликтового излучения как индикатор ранней Вселенной ( Часть 1 )
ГлоссарийФото космосаИнтернет магазинКосмос видео



Анизотропия реликтового излучения как индикатор ранней Вселенной ( Часть 1 )
Версия для печати

Планковский характер спектра реликтового излучения является свидетельством существования в прошлом состояния локального термодинамического равновесия (ЛТР) между квантами и космической плазмой. Это условие позволяет построить детальную тепловую историю ранней Вселенной с указанием характерных этапов, когда происходило изменение качественного состава материи вследствие взаимопревращений различного рода элементарных частиц.

Однако, по мере приближения к современному состоянию равновесие между плазмой и излучением неизбежно должно было разрушиться, ведь расширение Вселенной одновременно является и источником охлаждения вещества.

Охлаждение космической плазмы приводит к необратимым изменениям ее состава - свободные электроны захватываются протонами и образуют нейтральные атомы водорода. Этот процесс играет решающую роль в динамике формирования анизотропии реликтового излучения, поскольку резкое уменьшение концентрации свободных носителей заряда (электронов и протонов) "выключает" реликтовое излучение из взаимодействия с веществом. При этом спектр реликтового излучения "консервирует" в себе информацию о свойствах поверхности последнего рассеяния квантов на свободных носителях заряда. Каковы же свойства этой "поверхности" ?

Этот вопрос, несмотря на его кажущуюся простоту, на протяжении почти 30 лет определял вектор развития одного из самых бурно прогрессирующих направлений внегалактической радиоастрономии, стимулируя как теоретические, так и экспериментальные исследования. Дело в том, что именно свойства поверхности последнего рассеяния квантов на электронах являются ключом к решению важнейшей проблемы астрофизики, да и всего естествознания - как и почему в расширяющейся Вселенной возникли различные структурные формы самоорганизации материи?

Корни этой проблемы уходят глубоко в историю астрономии и физики, к эпохе Галилео Галилея и Исаака Ньютона, когда первый, с помощью простейшего телескопа, существенно расширил горизонты изучения космоса, а второй, открыв закон всемирного тяготения, показал, что небесные тела движутся (и существуют) благодаря гравитации материи.

Следующий шаг в решении проблемы сделал Джеймс Джинс, опубликовавший в 1902 году знаменитую работу о гравитационной неустойчивости пылевидной материи. Вкратце, постановка задачи и основные результаты этой работы сводились к следующему.

Представим себе, что космическое пространство заполнено однородно распределенным веществом, давлением которого можно пренебречь. Создадим в этом веществе слабую сферически симметричную неоднородность плотности (флуктуацию). Пусть для определенности это будет зона сгущения вещества. Тогда этот избыток вещества будет автоматически создавать избыток гравитационного поля, который, в свою очередь будет вызывать гравитационное ускорение частиц и, направленное к центру конфигурации. Такое движение вещества к центру, в свою очередь, приводит к уплотнению вещества, а, следовательно - к увеличению его плотности. Далее круг замыкается. Увеличение плотности приводит к увеличению гравитации, гравитация усиливает поле скоростей, скорости повышают степень уплотнения и т.д. Точный расчет показывает, что если в момент создания флуктуации начальный контраст плотности был сколь угодно мал, но конечен, то с течением времени он будет возрастать чрезвычайно быстро.

Применительно к галактикам, элементарные расчеты, основанные на идее Джинса, показывают, что за время порядка 3-10 млрд. лет микроскопические по амплитуде флуктуации плотности успеют дорасти до современного уровня и сформировать галактики. На первый взгляд, ключ к решению проблемы происхождения структур во Вселенной найден, ведь в любой системе большого числа частиц всегда существуют малые флуктуации в распределении их плотности (так называемые, статистические флуктуации). И, если для данной системы главным взаимодействием между частицами является гравитационное взаимодействие, то стоит подождать сравнительно небольшой отрезок времени, как вся система распадется на сгустки!

Есть, правда, одна маленькая деталь, которая портит все впечатление от простоты и элегантности решения проблемы. Дело в том, что мы не случайно обратили внимание на год публикации работы Джеймса Джинса - 1902. До открытия хаббловского разбегания галактик еще оставалось почти 27 лет.

К чему же приведет учет эффекта расширения Вселенной? Качественно ответ на этот вопрос ясен - расширение приводит к перестройке поля скоростей вещества в зоне неоднородности и вместо уплотнения конфигурации мы получим прямо противоположный эффект - неоднородность в распределении гравитирующей материи должна диссипировать (сглаживаться). Казалось бы, после 1929 года эффективный механизм гравитационной неустойчивости можно "списывать на свалку истории". Но, к счастью, это оказалось не так.

В 1946 году советский физики Е.М. Лифшиц детально исследовал вопрос о темпе гравитационной неустойчивости в расширяющейся Вселенной. Основные выводы его работы сводились к следующему.

Действительно, космологическое расширение приводит к уменьшению скорости нарастания амплитуды неоднородностей. Но средняя плотность материи уменьшается во времени еще быстрее. Следовательно, контраст плотности все-таки возрастает, хотя и значительно медленнее, по сравнению с наивным результатом, базирующемся на идее Дж. Джинса.

На первый взгляд, чисто количественное различие - вместо сильного лишь относительно слабый темп роста флуктуаций. Однако за этим различием кроются фундаментальные физические следствия. И, прежде всего - структура во Вселенной не является продуктом усиления обычных статистических флуктуаций плотности вещества! Отсюда вывод - для развития структур в расширяющейся Вселенной уровня статистических флуктуаций недостаточно, а следовательно, в первичной космической плазме должны существовать малые неравновесные флуктуации, уровень которых, однако, превышает естественный равновесный фон на десятки порядков! Напомним, что это - 1946 год. До открытия реликтового излучения еще нужно подождать почти 20 лет, а до экспериментального обнаружения этих флуктуаций - почти все 50!.

Сразу же выделим две проблемы, вытекающие из анализа гравитационной неустойчивости в расширяющейся Вселенной:
- какова должна быть природа неравновесных флуктуаций и каковы физические механизмы генерации, хотя и слабой в абсолютном измерении, но гигантской, по сравнению со статистическими шумами, начальной неоднородности Вселенной?
- каким образом можно проверить гипотезу о существовании именно такой догалактической иррегулярности в распределении вещества?

Отправной точкой для ответа на второй вопрос послужит уже упомянутое выше предсказание теории расширяющейся Вселенной о том, что от эпохи рекомбинации водорода и вплоть до настоящего момента времени реликтовое излучение распространяется в пространстве свободно, без какого то ни было прямого взаимодействия с веществом.

Однако, при наличии слабой (на уровне тысячных долей процента) неоднородности в распределении вещества, этот процесс "окрашен" двумя важными дополнениями. Прежде всего, догалактические неоднородности плотности в эпоху рекомбинации водорода движутся относительно реликтового излучения с хаотическими скоростями. Как следствие, отделение плазмы от излучения в эпоху рекомбинации происходит чуть-чуть по-разному в различных точках пространства в силу влияния поля флуктуаций. Там где плотность вещества немного выше средней, выше и хаотические скорости движения плазмы. Кванты излучения, испытывая "последнее рассеяние" на электронах в зоне неоднородности, приобретают дополнительный импульс (а, следовательно, и энергию)