www.ASTROLAB.ru


ASTROLAB.ruСтатьиОткрытие в астрономии подтверждает существование антигравитирующего вакуума [Часть 2]
ГлоссарийФото космосаИнтернет магазинКосмос видео



Открытие в астрономии подтверждает существование антигравитирующего вакуума [Часть 2]
Версия для печати

Теперь, когда мы бегло ознакомились с идеей антигравитирующего вакуума, рассмотрим самое значительное астрономическое открытие последнего времени.

В 1998 году две независимые группы астрономов и астрофизиков, одна – в Северном полушарии (США, руководитель Саул Перлмуттер), другая – в Южном (Австралия, руководитель Бриан Шмидт) опубликовали результаты своих многолетних изучений взрывающихся звезд, называемых Сверхновыми.

В современной астрономии первое знакомство с внезапно появляющимися яркими "новыми" звездами произошло 31 августа 1885 года, когда астроном Гартвиг из обсерватории города Тарту обнаружил такую новую звезду вблизи от ядра туманности Андромеды. Тогда еще не было известно, что эта туманность на самом деле является гигантским сообществом нескольких сотен миллиардов звезд, ныне называемого галактикой, и что она удалена от нас более чем на 2 миллиона световых лет. А новая звезда, открытая Гартвигом, в момент своего появления создавала поток излучения, который всего лишь в 6 раз был меньше, чем суммарный поток всех остальных сотен миллиардов звезд этой туманности. С 1885 до 1920 года в разных галактиках (туманностях) астрономы зарегистрировали около десяти вспышек подобных звезд. Позже (в 1934 году) название "сверхновая", закрепившееся за этими звездами, предложили американские астрономы Цвикки и Бааде. В литературе для краткости их обозначают СН (SN). Сегодня известно, что вспышки сверхновых – это очень редкое событие, в одной галактике оно происходит в среднем раз в 360 лет. Но так как галактик очень много, то в принципе даже при не очень совершенных инструментах астрономы могут наблюдать такие вспышки в разных галактиках примерно один-два раза в год. Ныне ежегодно наблюдается до 20 вспыхивающих СН, в том числе в галактиках, удаленных от нас на миллиарды световых лет. К 1983-му году было зарегистрировано около 500 СН. Одним из недавних событий этого жанра стала сверхновая 1987А. Она вспыхнула в Большом Магеллановом Облаке 23 февраля 1987 года на расстоянии 150000 световых лет от нашей Галактики. Считается, что это – важнейшее событие в истории науки, поскольку вспышка произошла относительно близко к нам, что позволило детально изучить ее во всех диапазонах электромагнитных волн, оценить поток нейтрино, возникший при этом событии, и получить в целом большой объем информации, включая и информацию о состоянии объекта перед вспышкой.

На базе Общей теории относительности и данных наблюдательной астрономии астрофизиками разработана теория эволюции звезд. Согласно этой теории сверхновые звезды возникают на заключительном этапе эволюции звезд, масса которых превышает примерно в восемь раз массу Солнца. Впрочем, рассматриваются варианты, когда сверхновой может стать белый карлик, образовавшийся в конце жизненного пути звезды с массой того же порядка, что и у Солнца, но при условии, что он входит в систему кратных звезд. Эволюционный путь предшественника сверхновой представляется в следующем виде. В недрах таких звезд термоядерные реакции продолжаются вплоть до появления железа, элемента, на котором завершаются реакции синтеза тяжелых элементов, протекающие с выделением энергии. В центре звезды образуется железоникелевое ядро. Если его масса превышает так называемое критическое значение Чандрасекара, равное 1,4 массы Солнца, то ядро сжимается (коллапсирует), его температура растет и по достижению ста миллиардов градусов железо распадается на протоны, нейтроны и некоторое количество ядер гелия. Протоны соединяются с электронами, превращаются в нейтроны и возникает компактное нейтронное ядро. Плотность достигает 1014г/см3, радиус ~ 20 км. Ядро почти несжимаемое, но гравитация стремится сжать его, возникает мощная отдача, порождающая ударную волну со скоростью порядка десятков тысяч км/с. Ударная волна и инициируемые ею газодинамические процессы ведут к взрывообразному сбросу оболочки, в результате остаются нейтронная звезда и разлетающаяся оболочка. В момент максимального блеска сверхновой ее светимость в десять миллиардов раз превышает светимость Солнца. Светимостью звезды называют энергию, которую она излучает во всем диапазоне электромагнитных длин волн за одну секунду. Общая же выделенная энергия за все время существования сверхновой достигает значений порядка 1050- 1053эрг (для выделения такой энергии Солнцу потребуется более миллиарда лет). 1% этой энергии уносится электромагнитными излучениями, остальную энергию выносят нейтрино.

По спектрам изучения СН их разделяют на две группы. В первую входят СН типа 1, именно звезды такого типа изучались обоими группами исследователей, упоминавшихся в самом начале. Кривые изменения светимости звезд этой группы со временем ("кривые блеска") и их спектры очень похожи друг на друга На графике 2 представлена типичная кривая блеска СН типа I. Условные единицы по шкале ординат приведены в логарифмическом масштабе, так что рост и спад светимости проходит по экспоненте.