www.ASTROLAB.ru

ASTROLAB.ruСтатьиБезинерциальные заряды и токи [Часть 1]
ГлоссарийФото космосаИнтернет магазинКосмос видео



Безинерциальные заряды и токи [Часть 1]
Версия для печати

Часть 1. Гипотеза об эквивалентности 2-х калибровок

Введение
Исследуя проблемы калибровки уравнений Максвелла [1], [2], мы математически строго доказали следующее.

1. Задача Коши для уравнений в частных производных не имеет единственного решения. Решение зависит от выбора калибровки, т.е. калибровочная инвариантность и градиентная инвариантность в общем случае не имеют места.

2. Предельный переход в уравнениях Максвелла от волновых процессов к квазистатическим при v«c является незаконным.

3. В силу этого, электромагнитные волны и квазистатические поля заряженных инерциальных частиц (электронов, протонов и т.д.) должны описываться разными группами уравнений. Электромагнитная волна должна удовлетворять волновому уравнению, а квазистатические поля должны описываться уравнением Пуассона.

Поскольку выводы опираются на строгое математическое доказательство и не содержат каких-либо гипотез, они подрывают основы не только классической электродинамики, но и квантовой электродинамики.

В то же время, хорошее согласие уравнений Максвелла с экспериментом (например, прекрасно подтвержденная экспериментом теория антенно-фидерных систем) и ряд важных результатов в квантовой электродинамике требуют поиска объяснения этих фактов.

В настоящей работе показано, что существует условие, при котором имеет место градиентная инвариантность, т.е. эквивалентность кулоновской калибровки и калибровки Лоренца. Рассмотрены также следствия, вытекающие из этого условия.

1. Токи в коаксиальной линии
Первым направлением наших исследований, нацеленным на решение поставленной проблемы, стал анализ различных калибровок уравнений Максвелла и попытки видоизменить эти уравнения так, чтобы сохранить положительные результаты и правильно описать явления. К сожалению, этот путь не привел нас к желаемым результатам.

Второе направление - анализ решений уравнений Максвелла для различных задач электродинамики. Именно этот путь позволил переосмыслить уравнения Максвелла и найти условие, при котором градиентная инвариантность имеет место.

В качестве иллюстрации рассмотрим распространение полей в коаксиальной линии (ТЕМ волна). Когда к линии подключается источник напряжения, между проводниками линии начинает со скоростью света распространяться электромагнитная энергия. Проводник, как известно, можно рассматривать как квазинейтральную систему, в которой заряды электронов и ионов создают суммарное поле, равное нулю при отсутствии сторонних источников полей. В рамках максвелловской теории имеет место закон сохранения заряда. Если заряды возникают (разделяются), то попарно (положительный и отрицательный) без нарушения этого закона.

Мы должны при объяснении процессов принять также во внимание то, что согласно современным воззрениям средняя скорость электронов проводимости в проводнике весьма мала.

Вернемся к полям в коаксиальной линии. Рассмотрим процесс распространения энергии при подключении к линии источника постоянного напряжения. В современной литературе нет ясного объяснения процесса распространения энергии от источника. Мы рассмотрим некоторые варианты.

Вариант первый. Это наиболее распространенный вариант объяснения. В линии будет распространяться волна, которая на поверхности проводников образует заряды. Поверхностные заряды движутся и создают поперечное электрическое и магнитное поле.






??????.???????